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STOCHASTIC BEHAVIOR OF

DIGITAL COMBINATIONAL CIRCUITS

David K. Cheng and A. U. Shankar
Electrical and Computer Engineering Department

Syracuse University, Syracuse , NY

ABSTRACT

The stochastic behavior of digital combinational circuits is

analyzed by the use of Walsh functions. An n—input Boolean func-

tion is represented as a Walsh series and the error caused by noise

is measured in terms of a distance which is the fractio’i of the time

that the system output due to noise—corrupted signal dif fete from

that due to signal alone. It is shown that the error can be ex—

pressed as the sum of two parts: one part depends only on noise

• statistics, and the other on both signal and noise. Some interesting

properties of both parts are discussed and typical examples are given.
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INTRODUCTION

The output behavior of linear (and some nonlinear ) analog systems

in response to stochastic inputs can be determined in a large number of

cases. However, no such comparable facility exists for digital systems

such as those employing threshold—type devices and discrete—valued wave-

forms. Given input statistics and digital system transformations, it

is, in general, a formidable task to obtain the output statistics. An

obvious reason for this difficulty is that digital device (such as a TTh —

gate) models are not linear RLC models and cannot be handled by the usual

linear algebra and calculus. Logical algebra and an associated calculus

that is digital in nature are required [1]. In this connection, Walsh

functions have been found to be relevant [2J—[5] . This paper expresses

an n—input Boolean function as a Walsh series and defines the error at

the output of a combinational circuit caused by noise as the distance

between the responses to the signal and to the noise—corrupted signal

• inputs. The use of Walsh functions appears natural here and does, in

fact, facilitate the computation of the system error [6],[7).

It will be shown that the error can be obtained as the sum of two

parts: one part depends on noise statistics only, and the other depends

on the characteristics of both signal and noise. For independent and

identically distributed noise processes, the first part is invariant over each

of certain equivalence classes of Boolean functions. Under certain con—

- : ditions of noise and signal component processes, the system error is

expressible as a polynomial function of the expected values of signal

and of noise. Some interesting properties of the error polynomial will

•.  _  •• .• •
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2

be discussed. The Boolean functions of two combinational circuits are

studied, and the system errors are computed and plotted for various

statistics of signal and noise.

PRELIMINARY CONSIDERATIONS

Any n—input combinational circuit, S, can be represented by a

Boolean function that maps every binary n—tuple to either 0 or 1. Let

the set of all binary n—tuples be denoted by Vn~ 
Then

r V {<x 1, x 2 , . . . , x > :  x~ £ (0,11 for 0 < I < n} (1)

Since an n—tuple can be considered as a vector, it is convenient to denote

<x1,_1, x~~2,..., x0> by ~~~. Let x stand for the integer whose binary repre—

sentat ion is ~; we have

n-i
x ~ x4 2~ (2)

j — O J

Equation (2) establishes an equivalence between {O,l,2 ,..., 2~—l}, denoted by

D , and V in Eq. (1) . Any function or operation defined on Vn is thus also

defined on D~ . Figure 1 shows a schematic diagram of an n—input combina-

tional circuit with a single binary output.

Dyadic operations are fundamental to Walsh functions and their

-
. applications. Dyadic addition, denoted by ~J (on Vne and hence on Dn)~

is defined as follows. For any and j in V ,

X 7 ~ <~n~l ® 
~
‘n-l’ ~n~2 ® ~~~~~~~~~ ® y0> c V ~ (3)

where 

- _ _ _ _ _ _ _ _ _ _- .  - 
• • :  - ~~
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0 e O — l e l — O  (3a)

- 
and

0 ~~~ l — l  ® O~~~1 (3b)

In fact , (V , ®) forms the dyadic group for which Walsh funct ions are

the character functions (81.

For an input ~(t) — {<x 1(t) , Xn 2 (t ) , . . ., X (t )> :  for tcT, X
i
(t)c {O,l} ,

for 0 < i < n}, where each X1(t) is a b1~~ry stochastic process , the

output of a given combinational circuit S is also a binary stochastic

process {s(~(t)) c {O,1}: teT}. We define a distance Ds[~
(t), ~(t)J be—

— 

tween the responses to two inputs ~(t) and ~(t) as the fraction of the

time that the output S(~(t)) differs from S(~(t)). If ~(t) is the signal

input process in the absence of noise and iL~(t) — {<X.d fl...l
(t) ,  X.d,fl...2(t) ,

XN O (t) >cV1~ : t-cT} a noise—corruptec~’. input process, then, in general,

S(i(t)) # S(L~(t)) and we write the error at the output due to noise at
the input as

D~ (X(t)~ ~(t) ] 
- (4)

A more precise definition for will be given later.

We assume that the noise isalso a binary process N(t)

Nn_2(t)~~••~ 
N (t)> € V :  tc~~} and is added to ~(t) dyadically to yield

— 5~(t) ® ~ (t) (5)

- . The dyadic addition in Eq. (5) is appropriate inasmuch as a combined input

digit is in error if and only if the corresponding noise digit is 1. Conse—

quently Walsh functions can be used to advantage in noise—error determi—

nation.

Walsh functions, denoted by Wal( ), form an orthogonal basis on

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~ -•-_-. —• - ~~~~~~~~~~~~~~~~~~ .~ ~.
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V (8], [9) . For i £ D and ~ £ V , the Hadamard—ordered Walsh functions (10],
[11], are: n—l

Z i~ X~

Wa1(i,~) — (—1) (6)

where the notation conforms with that in Eq. (2). Obviously, Wal(i, )c{l,—l}.

The following properties can be readily verified (8], (12]:

(a) Wal(i,x) Wal(x,i) (7)

(b) } Wal(i,)  Wal(j,)  — 2~&~ . (8)• xcV
U

where is the Kronecker delta .

(c) Wal(t, 
~~~ ~) — Wal(i,) Wal(i,~) (9)

- - EQUIVALENT BOOLEAN FUNCTIONS AND THEIR WALSH REPRESENTATION

Because Walsh functions form an orthogonal basis on T n’ we can

represent any Boolean function as a Walsh series. We write, for any

n-input Boolean function S,

S(~) } bi Wal(i,~) (10)
icDn

where

b1 
— 

- S(~) Wal(i,i) (11)
x€V~

Two Boolean funct ions S1G) and S2 ( )  on V~ are said to be equivalent (13]

if there is a sequence of permutations and complementations of some of

the variables <x~~1, ~~~~~~~ ~~~~ to produce <y~_~, y~_2,...,y0> such that

for every c

s1G) ® S~ ( )  — d , for d € {o ,i} (12) 

- ~~~ -- — - --~~~~~~~~~—- -~ . .~~~~ —

~~~~ ~~~ I~~~~~:
_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Assertion I (See Appendix I for proof.)

Let an n—input Boo1~?1n function S(~) as represented in Eq. (10)

be transformed under an equivalence operation (permutations or comple—

mentations) to

Q(~
) — 

~ 
q
~ Wal(i,~) (13)

icD

(a) If Q() is the complement of S(~), then

(1 — b , f o r i— 0
q1 ”( (14)

( — b1 , for I D — (01 — {l,2,..,2’~—j.}

(b) If out of ~ e V ,  the inputs x , x , . . . ,x where m < n, are corn—
~l ~2plemented, then - 

-• - . 

q1 
= b1 Wal(i,h) (14

where
m

h ~ 2 (iSa)
k-i

(c) If and x
8 (0 

< ct,8 < n) are interchanged, then

ç b1 , for those i where i~ =

q1 ~ (16)
( b j~~~ 2ae 28’ for those i where i

a # i8

This assertion will be used to prove that the part of the error which depends

only on noise statistics is invariant over complementations in Boolean

functions and over an interchange of inputs under certain conditions.

NOISE ERROR IN COMBINATIONAL CIRCUIT

• We have defined previously a distance D f~(t), ~(t)]between the

-4  responses of a combinational circuit S to the inputs ~ (t) and i~(t) in a

• — ~~~~~~ - - — — ---
~~~~~
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qualitative manne. • For stochastic inputs over a discrete time domain T ,

Ds(
~(t) , Y(t)] — E ~ 

1 
~ [S(~ (t)) ® s(~(t))] } (17)

where D5[.,.] satisfies the following properties:

- 

(a) Ds[
~~

(t) , ~ (t)]  Ds[
~~

(t)
~ ~ ( t )]  > 0 (18)

(b) - Ds[
~~

(t) , ~ ( t)]  — 0 (19)

- - 

(c) D5[~ (t), ~(t)] < D 5(i~(t) , ~ (t )]  + D 5(~~(t) , ~(t )I (20)

Combining Eqs. (4), (17) and (10) , we have the following Walsh rep~ieaei~ta—

- 

tion for the error at the output of the combinational circuIt S for
- 

signal ~(t) corrupted by noise ~ (t) .

- 

= E { 
~ [ ~ b~ Wal(i,~(t)) 

— ~ b~ Wal(i,X~(t))]
2 1 (21)

tcT i~D icD

- s 
where the identity aeb = (a - b)2 for a,bc{O,l} has been used. The following
relations hold:

E{[l — Wal(i,N(t))]2) = 2 (1 — E[Wal(i,N(t))]} (22)

which vanishes if I = 0; and

E{(1 — Wa1(i ,~~(t ) ) ]  [1 — Wa1(j,~i(t)]} = 0 (23)

-
~ if I or j 0. By using Eqs.(5),(22) and (23), we can put Eq. (21) in the

-~ following form :

+ 
~~~~~~~ 

- 

(24)

- where

— ~ b~ f l—E {Wal(i ,R(t ) ) }1 (25)
teT iCD

which depends only on noise, and

• --• -- ~ - — - ~~~~ 
- .

~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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~~~~~ 
= ~ b~b E {[l — Wai(i , ~ ( t ) ) J

tcT i#j:i,j€D ~

[1 — Wal(J, i~(t))J • Wal(i 0 j, X(t))} (26)

which depend s on both signal and noise. Note that D may be replaced by

D — {o}. Equatiorxs(24)—(26) are general results for system errors.

Under the complementation operations in Assertion I:(a),(b), which

transform S to Q, EqS. (14), (15) indicate that q~ = b~ for i # 0. Hence

E~Q (J )  = 

~~~ 
Furthermore, using ~qs. (16) and (25) we have

~ (N) = ~ b~ [1 — E(Wal(i, i~(t))})
tcTi= i

+ ~ b~ [1— E{Wal(i ~~ 2
a
®2

B, N( t) ) }]  (27)
t~T

Now, in view of Eq. (9), if N~ ( t) ,  N~(t) are identically distributed and

independent from the other noise processes,

i N (t) + I N (t)
E{Wal[i ®2°® 2

B, i~(t)]} = E{Wal[i, ~(t)1} i~~ —i) ~ 
8 

~ (28)

Since exactly one out of (ia , i~ } viii be 1 if I ~ i8, and since
N0(t) N

5
(t)

(—1) and (—1) have the same mean , it follows from Eqs. (25) and

(27) again tha t ~Q (N) = 

~~~ 
Hence, we can make the following assertion .

Assertion II

- 
- For a given combinational circuit S, the noise—dependent error term

IS

(a) invariant under a complementation of its Boolean function and/or a

• complementation of any subset of the inputs , and

(b) invariant under an interchange of inputs x0(t) and x5
(t) if the noise

-— — — __ __s- ,..-.___• 
- — - •~~

______________ -- ~ _ - ~~~~~~~ -~~~~•.~~~~~~~~~ -~~- - ---- - - - ~~~~~~~~~~~~~~~
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processes (Na(t)~ 
N
8
(t)1 are independent of {N1(t): i # a,B} and the

probabilities of Na(t) — 1 and of N
8
(t) — 1 are equal.

ERROR FOR INDEPENDENT AND STATIONARY INPUTS

The noise—error formulas in Eqs. (25) and (26) are quite involved,

and it is difficult to interprete the dependence of ~5(N) and ~5(N,X) on

the statistics of the noise and the signal . We shall now show that when

the signal and noise are independent and stationary processes, each

identically distributed, 
~s
(N) is expressible as a polynomial in the ex—

pected value of the noise and F 5(N,X) as a polynomial in the expected

values of the signal and the noise . Preparatory to the substantiation of

-. - 
this statement , we first need to establish a lemma.

Lenina (See Appendix II for proof)

If X~ € (0, i} are independent and identically distributed binary

random variables (0 < J < n) with Prob. (X~ 1) — then

E(Wal(i,X)} (1 — 2 6x)~~~
1
~ 

(29)

where Hm(i) denotes the Hamming weight of I:

n-i
Hm (i) — ) i~ (30)

j —O

Under the assumption that the signal and noise are independent and

stationary processes, each identically distributed, we obtain the follow—

ing Important simplified results from Eqs . (25) and (26) immediately , with

the aid of Eq. (29).
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Assertion III

If {x~(t) . Ni(t): 0 < I < ni are independent and stationary with

Prob[X1
(t) — 1] — E{Xi} — (31)

and H
Prob [N~(t) — 1] — E{N

i} 
— 6N (32)

then the component error expressions F
8
(N) and E,s(N ,X) in Eqs. (25) and

(26) for the Boolean function S represented in Eq. (10) can be simplified

• respectively to:

2 ) b211 — 
Hm(i)

] (33)
ieD

and

— ~ b~b [1 + ~~~~ ~~ J~~ P~~~~
)_ ~Hm(fl]~Hm(i0i) (34)

i#j:i,JcD

where
- 

- - 
px ’ 2

~x (35)

and

~N
1 2 ’

~N 
(36)

and Dn may be replaced by D~ 
— (01. Note that ~~(N) in Eq. (33) is a

polynomial in the expected value of the noise and that F
5
(N,X) in Eq. (34)

is a polynomial in the expected values of the signal and the noise. Both

t 

are relatively simple to compute and their sum can be plotted versus for

- J different values of for a given combinat ional circuit .

SPECIAL SITUATIONS

We now examine the behavior of the error for three special situ—

ations; namely, (A) the low—noise case, (B) the case of — 0.5 , and

(C) the unbiased—signal case. 

~~~~~~~ ~~ 1~~~~~~~~~~~~
- -

~~~~~~~~J~ i
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(A) The low—noise case: << 1

I 
- 

• In .uch a case, we can use the approximation

and write Eqs. (33) and (34) as

— ZcSNe (33)

and •

~~~~ 
—

- 
26N ~ e~

k-i

where, for 0 < k < n

e.
K 

- ~ b1b [Hm(I) + Hm(J) - Hm(i ® j)J (40)
i,itDn
Hm(i t~)j)k

Substituting Eqs. (38) and (39) in Eq. (24), we have

= 
~ 

e~ p~ (41)
k=0

Hence we can conclude from Eq. (41) that In a low—noise situation the

error increases approximately linearly with 6N’ the constant of pro-

portionality being a polynomial in p~. This conclusion is exhibited in

Figs. 2(a) and 3(a). Note that Is independent of the signal if

and only if ek 0 for 0< Ic<n.

(B) The case of ‘~ 0.5.

ThIs is a case of very high noise and, from Eq. (36), 
~N 

—

We have

• 6 2 , f o n i — j i t o

~ + p~
’
~~ ~~ ~~~~~_ 1,Hm(i) ~Hm(i) — 1, for i # # 0 (42)

t.. O, for i or j or both — O

- 
I 

—-----—-— — —_.~1-~~~~~~~~ - —- - ___________________________________ — —- — - — — —
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- • 
• ‘ Substitution of Eq. (42) in Eq. (34) and then combining with Eq. (33),

we obtain

~s 
= 

~~~ 
+ 

~~~~ 
- X c~ (43)
k—O

where

c = 2 ~ b~ (— ~ (N)) (44)
° iCD~— (0} 

S

and

ck ~~ b b  , i < k < n  (45)
i,jcD —(0)n
Hm(i®j)=k

Hence is a polynomial in p~ as in Eq. (41). is independent of

signal ~(t) if and only if ck 0 for 1 < k < n.

(C) The unbiased—signal case

In many situations the signal has no bias, or the environment is

not known; it would be reasonable to assume — 0.5 or p~ = 0. Hence

F
5(N,X) = 0 and

- - 

~s 
= 

~~~ 
2 ~ b2[1 - p~~~~ ] (46)
i€Dn

The error is then invariant over each equivalence class.

NUMERICAL EXMIPLES AND ERROR CURVES

We shall now apply the method developed in the previous sections

to determine the error at the output of two combinational circuits as a

function of the expected values of the signal and the noise at the input.

Both the signal and the noise component stochastic processes are assumed

• to be independent and stationary, each being identically distributed.

The error will be calculated and plotted versus for different

~~~ JiT~* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
_ _ _ _ _ _ _
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values of Two sets of error curves (one set for low—noise and the

other set for high—noise situation) are presented for the Boolean func—

tion of each combinational circuit.

Circuit 1 — A 3—input function: S(~) x
~
xix6 + x2x~x~ + x2x1.

For this Boolean function, S(x) 1 for x€’2,4,6,7} and the vector

representing the coefficients b4 (I — O l ,...,7) of the Walsh—series expansion

in Eq. (10) is found by Eq. (11;-- to be

— S = 2~~~[2 1 —l 0 —1 0 0 — 1]

In order to examine the behavior of the error curves in both the low—noise

and the high—noise situations, the ek coefficients in Eq. (40) and the

coefficients in Eqs. (44) and (45) are computed .

e 0.75, e
1

e
3
= O , e

2 0.25

c 0.50 , c c co 1 2 3

vs. curves are plotted in Figs. 2(a) and 2(b). It is seen that in

the low—noise range 
~~ 

increases almost linearly with S N and is dependent

on because e2 is non—zero. In the entire high—noise range, 
~~ 

depends

minimally on and becomes independent of at 6N °~
5’ in agreement with

the C
k

’ B being zero for k ~ 0. The error curves are monotonically increasing,

and thus a maximum uncertainty 
~
5N °~

5
~ 

does not cause a maximum error. The

compactness of both the low—noise and the high—noise error curves is apparently

due to the sparseness of the vector S.

_ _ _ _ _ _  _ _ _  _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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- • 
Circuit 2 - A 4—input function S(~) . x x ~(x1Gx0) +(x 3~~z2)x~z.~ + (z ;+x3x;)x1z0.

Here, S(i) 1 for xc{l,2,3,4,7,8,ll}, and the vector ~ is 
h

and the e.K and Ck coefficients are :

— 1.250, e1 — 0.750, e2 — 0.250, e3 
= —0.250 , e4 — 0

c0 
— 0.492, c1 = 0.0312, c2 

— —0.0156, c3 —-0.0312, c4 —-0.0391

vs. curves are plotted in Figs. 3(a) and 3(b). In the low-noise

range, increases almost linearly with The slope of the error curves

decreases fairly linearly with increasing 6 hence the low—noise error is

upper—bounded by the = 0 line. This linear dependence on results from

the dominance of e
1 over the other ek s. The high—noise curves demonstrate

two phenomena: firstly, heavily biased signals 
~~ 

— 0.001, 0.01, 0.90, 0.99)

suffer less error with greater noise above = 0.5; secondly, the value of

at which the maximum error occurs increases with increasing 5~,,. This

complicated behavior is a hallmark of the absence of, or having few, zero

Walsh coefficients (bi’s).

CONCLUS ION 
- 

- -

This report presents a procedure for analyzing the stochastic behavior

of digital circuits by the use of Walsh functions. In particular, the error

at the output of a combinational circuit caused by noise is studied by de—

fining a distance measure between the responses to the signal and to the

noj~se—corrupted signal. Restricting the noise to be dyadically additive,

which is perfectly reasonable, Walsh representation is used to obtain the

• error in terms of the input statistics. It is shown that the error can be

- --- • ~~-— —•-—-~~~~~~~~~ 

- - 

— ~~~~~~~~ -

_ _ _ _  _ _ _  -i



r’ 
~~~~~~~~~~~~~ 

_________ — - - -—

~~~

.,

~~~

--•‘-

~~~~~

- •

expressed as the sum of two parts: one pert depends only on noise statistics,

• and the other on both signal and noise. The former is invariant for equiva-

lent Boolean functions if the noise processes are independent and identically

distributed . Under the more constrained condition of independent and stationary

noise and signal processes , each identically distributed , the error is a poly-

nomial function of the expected values of signal and of noise. In low—noise

situation, the error increases linearly with the expected value of the noise

at the input. For unbiased signals the error polynomial is invariant over

each equivalence class. These properties are exhibited in two typical ex—

aisples.

APPENDICES

(I) Proof of Assertion I

(a) By hypothesis ,

Q(x) 1 — S(~~~ ) (A—i)

Using Eq. (10) and the fact that Wai(O , ~) 1, we have

Q(x) = Wal(0, ~) — ~ b, Wal(i, )
* icD ~n

— (1 — b ) Wal(0 , )  — 

~ b Wal(i,~) (A—2)
0 iCDn

_{0} i

Comparison of Eq. (A—2) with Eq. (13) proves Eq. (14).

(b) Complementing the m inputs changes x to — 1 with h given by
Eq. (15a) which implies h4 = 1 for all k. As a result ,

_ _ _  

~~~~~~~~~~~
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r - - Q ( )  — S(~) — S( ®

I.

. — ~ b1Wal(i ,~~~~~~~S)
icD~~~

— 
~ 

[b~ Wal(i, h)] Wal(i, )  (A~3)
leD

• it

from which Eq. (15) follows directly .

(c) Interchanging xa and x8 changes to ~ and

Q(~ ) — S(~) — ~ b~ Wal(i ,~ ) + ~ b Wal(i ,~ ) (A—4)
i —-I i#ia B

(c—i) If ia = i
8~ 

Wa1(i,~) — Wal(i,x) . Thus , q1 = bi.

(c—2) If i~ # i8, then for j I ® 2~ 0 28, j~ ~ j~~. We have

Wa1(i,~) — Wal(j ,~ ), and Wal (j ,~ ) = Wal(i ,~ ) .

Thus, q1 b~ ® 2a ~~ 2t3~
Equation (16) is therefore proved.

(II) Proof of Leumta

We note from Eq. (6) that only those x
3

1s corresponding to i~

Will have an effect on the value of Wal(i,~). If the X
i
’s are independent

and identically distributed, any collection of that many X
i
’s will suffice

for probability calculations for Wal(i,~). Thus,

— Hin(i)
- Prob [Wal(i,X) — 1] — Prob[( ~ X ) is even]

i—i

Hm�i) Hm~i)
— )

~ 
Prob U ~ X4 ) = w] (A—5)

w 0  i—i ~
(v is even)

• Hm~i) iHm(i)~
— ( j S ”(l-6 )Thn(i)w

w-0 ~ w J
X X

(w is even)

- — - - -—---- 
-• - — • -- --_ _ _ _ _ _ _ _ _ _ _ _



— •— — - •— —•- .—•. -—-•--- —,--—-.- ——--———•-- - ——— 
- -—.

~~~

.——————————-— — ,—.-•--•--•--— •-• -—- --..- --•-•.--— — -- — —-- —-- — — -
~~

-•-,--——
~~~—---- ----—-— —_ - _•- ,. I

16

• Similarly,

Hm(i)
Prob [Wal(i ,X) — — 1] — Prob [( ~ X4) is odd]• j —l

Hm(i) iHm(i)~
— ) ~~~~~~~~~~~~~~~ (A— 6)

w 1
(w is odd)

Combining Eqs. (A—5) and (A—6), we have

E[Wal(i,~)] — Prob (Wal(i,~) — 1) — Prob [Wal(i ,~ ) = — 1]

- 

f~~~ 

(Rm i)

) ~~~~~~~~~~~~~~~~~~~

= (1 — (A—i)

which is Eq. (29), the lemma to be proved .

• -*- - ~~~~~~~ --~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _ _ _ _ _ _ _
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Fig.2(a). Low—noise error curve for circuit 1.
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Fig.2(b) . High—noise error curve for circuit 1
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Fig. 3(a). Low—noise error curve for circuit 2.
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High—noise error curve for circuit 2.
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